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Exact solutions of a nonlocal nonlinear Schrodinger

equation
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In this paper, we study a nonlocal nonlinear Schrédinger equation (NNLSE). The infinitesimal generator, symmetry group
and similarity reductions are obtained by the aid of Lie group method. Subsequently, similarity solutions of NNLSE are
derived from the reduction equations. Finally, the auxiliary function method gives some exact solutions. Results show that
these solutions which we obtain can be used to study relating physical problems.
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1. Introduction

Since Zabusky and Kruskal defined the name soliton
in 1965, soliton theory has been developed rapidly [1].
The nonlinear optics was best used to reflect the diversity
of optical solitons. Optical solitons includes spatial optical
solitons, temporal optical solitons, and spatiotemporal
optical solitons. It was obtained from the balance between
optical pulse broadening caused by dispersion (or
diffraction) and optical pulse compression caused by
nonlinear effects [2-3]. It is well known that the nonlocal
nonlinear Schrodinger equation (NNLSE) plays a very
important role in many branches of mathematics and
physics. The dynamics of (1+1)-dimensional (one spatial
and one temporal variables) spatial optical soliton is the
NNLSE in nonlocal nonlinear media. The NNLSE can be
regarded as the most important soliton equation.
Therefore, the study of the NNLSE has important
theoretical and applied significance. Its form is given as
follows [4-6]:
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where u(xt) is the normalized slowly varying amplitude, s
= + 1 corresponds to focusing (s = +1) or defocusing
(s=-1)
function R(x) relative to the width of the optical pulse

nonlinearity. According to the width of response

intensity |u(x,t)?, the degree of nonlocality is divided into
three types: weak, general and strong. The recent studies
show that the weakly and strongly nonlocal nonlinear Kerr
media is of concern [7-9]. For a strongly nonlocal
nonlinear Kerr media [7-9], the nonlinear term in Eq.(1)
reduces to su(a+bx+cx?), a,b,c are real constants, and for a

weakly nonlocal nonlinear Kerr media[8], the nonlinear

suf[uf* + 52 (uf )|

term in reduces to

Ea.(1)

y:(l/Z)szR(x)dx

—0

In this paper, we consider the (1+1)-dimensional
spatial optical soliton in weakly nonlocal nonlinear
non-Kerr media with an external potential, for parabolic
law nonlinearity or cubic-quintic nonlinearity (polynomial
law nonlinearity of second order), its form is given as
follows:

iu, +au,, +b|u|2 u +bﬂ|u|4u +c|u|iX u+pu=0

)
where p represents an external potential, a,b,c and p are
real constants.

Seeking the exact solutions of the NNLSE has been an
interesting and hot topic since a long time ago [10-14].
Similarity solutions and solitary wave solutions are usually
used to describe physical phenomena and to check on the
reliability and accuracy of numerical algorithm, so getting
similarity solutions and solitary wave solutions has a great
significance. To the best of our knowledge, related
classical Lie group method and auxiliary function method
have not been preformed to the NNLSE [11,15].

In this paper, we first perform Lie symmetry analysis
[15-23] for the NNLSE (2). Then, we discuss the Lie
symmetry group, similarity reductions and reduction
equations of Eq.(2). Finally, by using the auxiliary
function method, we obtain Hyperbolic function solutions,
Elliptic function solutions and so on.
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2. Lie symmetry analysis and exact solutions
of NNLSE

2.1. Lie symmetry analysis of NNLSE
In this section, we will perform Lie symmetry analysis
for Eq.(2), and obtain its infinitesimal generator and
symmetry groups. To this aim, we first use the following
transformation
u=ve? ©)

we can get

u =Vv,e” +ipe“v , 4)
u, =Vv,e” +2ieYpV, +ivp,e” +i’e’p’v , (5)

|u|iX =2V2 +2w, . 6)

Substituting (4)-(6) into Eq.(2), separating the real and
imaginary part, we can obtain

— @ V+av,, —apiV+2CW2 +2¢V2V,,

{vt +2av, @, +ave,, =0,
+bv3+bBv® + pv=0.

()

According to the method of determining the

infinitesimal generator of NPDEs, we can obtain the
infinitesimal generator of Eq.(7) as follows:

0 0 0
\i:g(x’t’(o’v)&+¢(X’t’¢’v)a+771(X!t1(piv)£

0
+772(x,t,go,v)a

(8)
where £(X,t,@,v), #(X,t,@,v), 7,(Xt,0,V) and

coefficient functions of the

17, (Xte,v) are
infinitesimal generator to be determined.

Using the invariance condition pr(z)\i(A) ,=0,
where A isEq.(7) and pr®v is the second prolongation

of V . Applying the second prolongation of V to Eq.(7),

and with help of Maple software, we can obtain

X
é::C1t+C2’¢:C31771:2_2+C4,772:O 9)

where C,,C,,C,,C, are arbitrary constants.

We can obtain the corresponding geometric vector
fields of Eq.(7) as follows:

V].:g’vzzg’v3:iiv4:ti+ii (10)
ot OX op OXx 2ade

Then, all of the infinitesimal generators of Eq.(7) can
be expressed as

V =cV, +¢CV, +¢,V, +¢,V,. (11)
To obtain the group transformation which is generated
by the infinitesimal generators V, for i = 1,2,3,4, we

should solve the following initial problems of ordinary
differential equations:

where

and & is a group parameter.

Exponentiating the infinitesimal symmetries of Eq.(7),
we can obtain the one-parameter groups gi(g
generated by V, fori=1234

0,1 (X tpv) > (x+&t,9,V),
9, :(xtev) > (Xt+e,0,V),

g; : (x,t,p,v) —> (x+tg,t,%+¢,vj,
g, (xtev) > (xte+ov),

where @, isaspace translation, {, isatime translation,

& is an arbitrary constant.
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Using the above groups g, (i = 1234), if
@ = f(x,t),v=h(xt) is a known solution of Eq.(7),

we can obtain the corresponding new solutions @,,V, (i
=1, 2,3,4) respectively as follows:

g = f(x—et),v, =h(x-gt).

@, = f(xt—¢),v, =h(xt-¢).

@, :[1+%j f(x—tet),v; =h(x—tet).

@, = f(xt)—e,v, =h(xt).

According to the known solution

¢="f(xt),v=h(x,t), by using one-parameter

symmetry groups @; (i = 1,2,3,4) continuously, one can

get a new solution which can be expressed as the
following form;

X
(p:(1+2—(;3j f(x—&—tet—¢,)—g,,

v=h(x—g —te,t-¢,),

where & (i =1,2,3,4) are arbitrary constants.

2.2. Symmetry reductions and exact solutions of
NNLSE

In the section, we will obtain similarity variables and
its reduction equations, and get similarity solutions by
solving the reduction equations.

0
ot

similarity variables are =X, F(r)=¢,G(r)=v,

Case 1. For the infinitesimal generator V, = —, the

and the solution is

p=F(r)=p,v=G(r)

group-invariant

Substituting the

group-invariant solution into Eq.(7), the reduction

equation as follows:

{2 aG,F, +aGF,, =0,
aG,, —aGF,?+2cGG? + (13)
20G?G,, +bG3+bSG° + pG=0.

Case 2. For the infinitesimal generator V, = the

0
&1
similarity variables are r=t, F(r)=¢, G(r)=v,
and the group-invariant solution is
@=F(r),v=G(r). Substituting the group-invariant

solution into Eq.(7), the reduction equation as follows:

=0
r 7
{(—SFrG +bG3+b G + pG=0.
(14)

Eq.(7) has a solution ¢ =C;,V=C, where C,,C, are

arbitrary constants. Obviously, the solution is not
meaningful.
o 0 X 0
Case 3. For the infinitesimal generatory, =t —+——,
oX 2aodgp
the similarity variables are
_ 2
r=t F(r)=222-"X G-y, ad the
4at
group-invariant solution is

X2 . -
= F =, v=0(r Substituting  the
p=F(r)+ = (r)

group-invariant solution into Eq.(7), the reduction

equation as follows:

G, —|——21 G =0,
r
{—FrG+bG3+b,6G5—|— pG=0. (15

Case 4, For the infinitesimal

V, =kV, +dV, = kg +d ﬁ, the similarity variables are
ot oX

generator

r = kx —dt, G(r)=v, and the

F(r)=¢
group-invariant  solution is ¢ =F(r) , v=G(r) .

Substituting the group-invariant solution into Eq.(7), the
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reduction equation as follows:

—dG, +2ak?G, F, +akGF,, =0,
dGF, +ak’G,, —ak’GF,? +2ck *GG?

16)
+2¢ck’G2G,, +bG3+b8G° + pG=0.
Case 5. For the infinitesimal generator
X
Ve =V, +V, :§+t£+—i, the  similarity
ot oOx 2ade

(-2x+1)t—xt + 6ag

variables are r = —2X +t2, F(r)=

6a

G(r)=v, and the group-invariant solution is

Xt-(t - 2x]t o
(/,:F(r)Jr : ., v=G(r) Substituting  the

a

group-invariant solution into Eq.(7), the reduction
equation as follows:

8aG, F, +4aGF,, =0,

2—G+4aGrr—4aGF,2+8cGGr2+SCGZG” a7

a
+bG3+bBG% + pG=0.

3. Auxiliary function method for NNLSE

In this section, solitary wave solutions and similarity
solutions of Eqg. (2) that will be obtained by auxiliary
function method. We first use the following transformation

(18)

substituting (18) into Eq.(2), we can get the following
equation

d? do )
(a+20(p2)d—x(f+2c(p(d—i)j +(p—-2)p (19)

+bg® +bpe° = 0.

we solve Eq.(19) by auxiliary function method, and get
(o(x). We seek solutions of Eq.(19) in a power series of

the form

(20)

where 7 =sech(c, +¢;x),A (i=0,1,..,n) and C (i

= 1,2,3) are the constants to be determined. Balancing the
highest order item with the nonlinear term in Eq.(20) gives
n=1.

We can seek the solution of Eq.(20) in the form

p(X)=¢(r)=A +Ar

Substituting  (21)

(21)
into Eq.(19) and setting the

coefficients of 7' to zero, we obtain a set of algebraic

equations. Solving these algebraic equations with the aid
of Maple software, we obtain following solutions
Case 1.

(1) When ¢,p#0, p(x)=c,sech(c, +c,x), (22)
where
C(ZﬂCi +3) 6cc?
a= b="2 p=pc=c:
B e,
. 23ccics +3cc; +/3p' o= p.
B
(2) When a(A-p)>0,bcs >0, and

12¢* (A - p)—a’bB+3abc =0,

@p(x) = %;p)sech(x,,ﬂ%apj, (23)
Where  a= 2,c=s;/,b:s+7l, ﬂ=7%,

nonlocal coefficient

1 +00
Y= E I R(X)dx, third and fifth-order nonlinear

coefficient y,and y,, potential outfield p, frequency
A, amplitude (o(X).It is easy to obtain the analytical

solution of Eq.(2), we call U (X,t) is an analytical bright

soliton solution [15].
Using the similarity method, we can also obtain the
following explicit analytic solutions of Eq.(19)



Exact solutions of a nonlocal nonlinear Schrédinger equation 655

Case 2.

When ¢, =0,¢(x)=c, tanh(c, +c;x), (24)

where
c(4pc; +3)  _gec?
a= b= B=pc=c,
B Be;
—63ccic? —6ee? +
/1 — ﬁ 3 VY4 3 ﬂp ’ p — p
B
Case 3.

When ¢, #0,¢(x)=c,sec(c, +C;X),  (25)

where
c(2pc? +3 _
a= (ﬁ4 )’ 6C(2:3,ﬂ ﬂC_
B Bc,
—2fccic? —3cc? +
/1: ﬂ 3 V4 3 ﬂp,p:p
p
Case 4.

(1) When ¢80, ¢(x)=cJacobiS N(c, +¢,X,i),
(26)

where a = % 6CC3
pee

,p=p,c=c,
A=2ccici+p,p=p.

When ¢, 5 #0, 4(x) = c,JacobiS N{c2 +CyX, 0 ?J

@7)
where
0{2(1+J§i}ﬁ05j+3+2ﬂc§
2 2
a=
Y7
6005(—l+\/§i]
b= 2 2 p=pc=c
= Y = fB,c=

3cc 3(1 */_')+,3p
1=

2 p=0p
3 :

(2) When

8 #0, p(x) = c,dacobiS N(—c2 +CyX, ﬂj (28)

where
1 3i 2
c[ [2—2],805}+3+2,80
a=
Yz
6cc’ 1 Ve
b 2 2 s p
- ﬁ(;: ’ - ]
(13
. 3cc3{2 2] Y
c=c, A= =
J; pP=p
(3) When
c.B#0,

NE]

@(x) = c;JacobiS N[c +C,X —J (29)

cz—i—ﬂ Cs |+3—2c2
) s

2
where &= — B
6cc’ (—1—\/§j
b= 2 2 p=p,c=cC
pes R
3cc’ [—1—23']—,6’
A=— P=Dp
W
(4) When
¢ #0, p(x) = c,JacobiS N(c2 + cg,@}
(30)

where
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2" 2
VZ

6cc’ (—1 + \/;3”]

c(2[1+\/§iJﬂch—3—2ﬂc§

When ¢, # 0,
¢(x) = c;dacobiS N(c, +¢,X,c, ), (31)

2c¢cibB+2cicib B +3ccib B
a= >
6c;
2bBcz +6¢; p +3bc’c?
+ - p=
6c,

where

(5) When 2c8(af—3c)a=0,

a’ > +18c* —6acs +
cf(aB-3c)| |-3a*p*+24a°%c
—72a°c’° +108ac?

>0, and

-3a'f* +24a° fPc - 72a°c’ f* +108ac’ >0,

o(x)

—F )
- mJacobls N(c, +¢;x.¢), (32)

where p=p,c=c, p=pa=a,
~9c’c] +appB’ —3cppB
B(ap—3c)
be 12¢%c; (af—3c)

gy -3a‘'p* +24a°p°c
—72a°c*f* +108ac’
2(af—-3c

ap ( ! 4 4) 3 3
3c(-alf + -3a’ " +24a°fc—
72a’c’ f° +108a4c’
+3c

2ap(aB—3c)

F=ap(aB—3c)x
a’p* +18c* —6acp
cp(af—3c) | [3 st v 242 |
72a’c?3* +108apc’

Case 5.

When a(A-p)>0,bcs <0,and

12¢*(A—p)-a’bpB+3abc =0,

(P(X)=i\/¥ﬂ_p)csch(x@} (33)

a= 2,c=s;/,b:s+7l, ﬂ=7%,

nonlocal coefficient

where

+00
7=EIR(X)dX, third and fifth-order nonlinear

coefficient y,and y,, potential outfield p, frequency

A, amplitude (/)(X). It is easy to obtain the analytical

u(x,t) . .
solution of Eq.(2), we call ( ) is an analytical

singular solution [15].

Case 6.

When a(A—p)>0,bcs <0,and

12¢*(A-p)-a’hp+3abc =0,
¢(X)=i %';p)csc[x f%} (34)

a= 2,c=s;/,b:s+7l, ﬂ=7%,

nonlocal coefficient

where

1 +00
Y= E I R(x)dx, third and fifth-order nonlinear
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coefficient y,and y,, potential outfield p, frequency

A, amplitude (o(X). It is easy to obtain the analytical

u(x,t) . .
solution of Eq.(2), we call ( ) is a delta singular

periodic solution [15].

4. Conclusions

In this paper, based on Lie group method, we study
the symmetry reductions and exact solutions of a nonlocal
nonlinear Schrddinger equation. First, we perform Lie
symmetry analysis for the nonlocal nonlinear Schrodinger
equation and obtain its infinitesimal generator, symmetry
group. Next, using similarity variables to obtain reduction
equations, we get similarity solutions of Eq.(7) by solving
the reduction equation. In the end, we use auxiliary
function method to obtain exact solutions of the nonlocal
nonlinear Schrodinger equation. In future work, we will
consider the nonlocal nonlinear Schrodinger equation with
polynomial law of high order.
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